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Abstract
We reconsider the question of thermal radiation from accelerated mirrors in
the model of Fulling and Davies, with the assumption that the mirror moves
inertially after a finite acceleration time ta . We obtain the Planck distribution
by calculating the emitted spectrum as limta→∞ Nω(ta)/ta , where Nω(ta) is the
number of quanta produced in the ω mode on the trajectory with acceleration
time ta .

PACS number: 04.62.+v

1. Introduction

In a recent series of papers [1–3] on the well-known subject of thermal radiation in the
model of Fulling and Davies [4, 5], some aspects were brought to attention which, although
of fundamental relevance for the issue, seem to have largely remained unremarked in the
literature. We can summarize two of the main conclusions established in [1–3] as follows.
First, it was shown that, in order to correctly reproduce the blackbody spectrum, it is essential
to pay attention to the inertial part of the mirror’s trajectory, before it starts to accelerate.
Mostly on intuitive grounds, this contribution in the Bogoliubov coefficients was ignored in
previous works as being of no relevance for the radiation emitted in the infinite future, with the
idea that it corresponds only to a transient phase. As shown in [2, 3], the original calculation
of Fulling and Davies for the blackbody spectrum contains two errors, the end result still being
the correct one. By a fortunate chance, the missing contribution from the inertial part of the
trajectory in their treatment happens to be exactly compensated by a wrong evaluation of the
amplitude from the accelerated one.

Secondly, by comparing the Bogoliubov coefficients calculated for trajectories with finite
and infinite acceleration times, evidence was shown of their qualitatively distinct behaviour at
large frequencies. Based on this, it was concluded that, for a trajectory where the mirror will
ultimately revert to a uniform motion, no matter how large the acceleration time and how close
to the speed of light the final velocity will be, it is impossible for the two sets of coefficients
to assume an identical form [1, 3].
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Connected with the two points above, the following picture was suggested in the cited
papers. On one hand, we cannot consider, as is commonly done, that it is only the late time
part of the trajectory which counts in establishing the Planckian form of the flux, allowing us
thus to discern between a ‘transient’ and a ‘relevant’ regime at large times in the future. On
the other hand, an asymptotically inertial trajectory will necessarily fail to produce this type
of spectrum.

Not contradicting the mathematical results in [1–3], we want to show here a way to derive
the thermal spectrum which, still, does not make necessary these views. More exactly, we
want to present a calculation using trajectories that become inertial after a finite acceleration
time, with the Planck distribution being obtained in the limit when this time is allowed to
approach infinity. Apart from this, we think that our method for calculating the spectrum
(which is essentially contained in formula (1)) will provide a good argument in support of
the idea that, as traditionally believed, the thermal character can be assigned to the radiation
coming from the late time part of the accelerated trajectory.

The programme we set before us is as follows. We shall consider a mirror that (i) remains
fixed or moves inertially up to the moment t = 0, after which (ii) accelerates for a finite time
ta , and then (iii) reverts to a uniform motion, maintaining the same velocity up to the infinite
future. Let us recall that a property of the perpetually accelerated trajectories assumed to lead
to a Planck spectrum is that they produce a constant flux for times t → ∞. Inspired by this,
we shall choose our trajectories so that the emitted flux is constant (i.e. time-independent) for
the whole acceleration interval. Our first task will be then to evaluate the total number of
particles produced by these motions in the ω mode as a function of the acceleration time ta .
We shall denote this number by Nω(ta).

The next step in our construction requires some discussion. Let us imagine that for a
trajectory characterized by a given parameter ta , a stationary observer analyses the flux as a
function of time. According to our own choice above, the energy flux will constantly display,
when non-vanishing, the same value. Considering the spectrum of the detected particles,
however, there is clearly no reason to expect a similar constancy; the quantum particle with a
definite frequency is a non-local object, so most certainly transient effects will show up near
the special emission times t = 0 and t = ta .

Nevertheless, it is a good question to ask what happens if we let ta take increasingly large
values. Having in mind the time-independence of the flux and, also, the quite unsophisticated
nature of our system, it is very plausible to admit that as ta grows larger and larger the spectrum
will also tend to assume some well-defined form, and remain close to it for an increasingly
large fraction of the acceleration interval. In particular, in the limit when ta approaches infinity,
this picture naturally allows us to conclude that the vast majority of particles which define the
total numbers Nω(ta) will be distributed according to this spectrum.

Thus, it appears a most sensible proposition to identify the emission spectrum from times
t → ∞ in the accelerated regime with the following quantity:

nω = lim
ta→∞

Nω(ta)

ta
. (1)

The underlying idea in considering the ratio under the limit is, of course, that due to the
constancy of the flux we expect the total number Nω(ta) to diverge linearly with the emission
time ta .

Our second task in the paper will be to evaluate (1), and to see whether we recover thus
the spectrum from previous works. As we shall show in the following sections, this proves to
be indeed so.
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2. Preliminaries

2.1. The trajectories

Let t and x denote the coordinates in two-dimensional Minkowski space, and let us introduce
the null coordinates

u = t − x v = t + x. (2)

We shall take the accelerated part of the trajectory to be described by the dependence1

u(v) = −k−1 ln(1 − v/vH ) (3)

with k and vH > 0 fixed, and with v in the interval

0 < v < vH . (4)

Equation (3) implies that the mirror starts to accelerate in the negative direction from t = 0
and x = 0, and approaches the speed of light for v → vH , or

t (v) = 1
2 (v − k−1 ln(1 − v/vH )) → ∞. (5)

The constant vH fixes the position of the asymptotic part of the trajectory near infinite times,
while k determines the value of the local flux (see equation (47); we shall refer throughout the
paper to the region at the right of the mirror). Depending on the product kvH the mirror can
have different initial velocities at t = 0, but this is of no importance for our problem.

To obtain finite acceleration times, we shall introduce an upper limit va < vH for the v

coordinate in equation (3), restricting its range to

0 < v < va. (6)

The relation between va and the acceleration time ta can be read from the identity in
equation (5). The limit ta → ∞ will be obviously obtained by letting va → vH .

For v outside the interval (6), we shall assume that the trajectory is uniform. This implies
choosing a linear dependence for u(v), which we shall write as

u(v) = C± + D±v (7)

with C± and D± independent of v. The convention will be that the + case applies for v > va ,
and the − case for v < 0. The constants in equation (7) are fixed by imposing the natural
continuity condition for the mirror’s position and velocity at v = 0 and v = va (which amounts
to the continuity of u(v) and its derivative). The exact form of these quantities, however, will
play no direct role in our calculation.

2.2. The Bogoliubov coefficients

The first step is to calculate the beta Bogoliubov coefficients connecting the negative and
positive frequencies of the in and out modes

β(ω′, ω) = (
ϕin

ω′
∗
, ϕout

ω

)
(8)

where the parenthesis in the right member denotes the usual scalar product for scalar fields,
and where ϕin

ω and ϕout
ω are given by [4, 5]

ϕin
ω (u, v) = i√

4πω
(e−iωv − e−iωg(u)) (9)

ϕout
ω (u, v) = i√

4πω
(e−iωf (v) − e−iωu) (10)

1 For times t → ∞ our choice is essentially equivalent to the x(t) = − ln cosh(t) trajectory considered in [4, 5].
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with ω > 0. We recall that the f function is obtained by taking

f (v) = u(v) (11)

where u(v) is the trajectory function defined slightly above (g will not appear in our
calculation).

To evaluate the scalar product (8), we choose the Cauchy hypersurface to be the null line
u = u0, v0 < v < ∞ with u0 fixed and v0 such that u(v0) = u0. We find with this(

ϕin
ω′

∗
, ϕout

ω

) = i
∫ ∞

v0

dv ϕin
ω′

↔
∂v ϕout

ω . (12)

The integral (12) can be simplified by eliminating the
→
∂v derivative with one integration by

parts, from which(
ϕin

ω′
∗
, ϕout

ω

) = −2i
∫ ∞

v0

dv
(
∂vϕ

in
ω′

)
ϕout

ω (13)

where we have taken into account that no contribution comes from the boundary terms (the
modes vanish at the mirror’s position and at infinite distances). Introducing equations (9) and
(10) in equation (13) and letting v0 → −∞, we obtain

β(ω′, ω) = 1

2π

√
ω′

ω

∫ +∞

−∞
dv e−iω′v−iωf (v). (14)

(Note that we have ignored the u, v mixing term e−iω′v−iωu in the integrand; it leads to a
quantity proportional to δ(ω′), thus being of no importance here). Our expression (14) for the
beta coefficients is practically the same as that in the calculation of Fulling and Davies, with
the only difference being that the integration domain is restricted there to (0, vH ).

Passing to the explicit evaluation of the coefficients, we proceed as follows. We split the
v integral as ∫ +∞

−∞
=

{∫ 0

−∞
+

∫ ∞

va

}
+

∫ va

0
(15)

and write, correspondingly,

β(ω′, ω) = βu(ω
′, ω) + βa(ω

′, ω) (16)

thus separating the contributions from the uniform (βu) and the accelerated (βa) parts of the
trajectory.

The βu contribution can be easily calculated, given the linear form for f (v) for v outside
the interval (0, va). We find2

βu(ω
′, ω) = 1

2π

√
ω′

ω

(
i

ω′ + D−ω
− i e−iω′va−iωf (va)

ω′ + D+ω

)
(17)

where we have used the fact that the constants in equation (7) obey, cf the continuity of the
trajectory at v = 0 and v = va ,

C− = f (0) = 0 C+ + D+va = f (va). (18)

The βa contribution is definitely more complicated, so we are content to write for the moment

βa(ω
′, ω) = 1

2π

√
ω′

ω

∫ va

0
dv e−iω′v(1 − v/vH )iω/k. (19)

2 We introduce a small convergence factor to deal with the v → ±∞ limits. Note that the two denominators in the
parentheses never vanish, since du/dv > 0 implies D± > 0.
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Our next task will be to extract from equations (17) and (19) an (approximate) expression for
the total particle number

Nω(ta) =
∫ ∞

0
dω′|β(ω′, ω)|2 (20)

for large acceleration times ta → ∞, as a starting point for the evaluation of our limit (1).

3. The asymptotic spectrum

3.1. The divergent ta → ∞ contribution in Nω(ta)

Let us begin by making the observation that if we integrate only the |βu(ω
′, ω)|2 contribution

in equation (20), we obtain a logarithmic divergence from frequencies ω′ → ∞. Thus, our
first step will be to put β(ω′, ω) in a form that leads, in a visible way, to a finite result.

Let us denote by Ia(ω
′, ω) the integral in equation (19). It is convenient to rewrite it as

Ia(ω
′, ω) = vH e−iω′vH

∫ 1

ε

dz eiω′zziω/k (21)

which follows from passing to the new variables

z = 1 − v/vH ε = 1 − va/vH . (22)

Note that the limit ta → ∞ corresponds now to ε → 0.
We observe that, if we consider z in equation (21) as a complex variable, the integrand is

everywhere analytical for Re z > 0. Hence, we can apply the Cauchy theorem for a closed
contour in this semiplane. Our choice for the integration path is as follows. We take it to be
the rectangle3 defined by (a) one edge given by the real interval ε � z � 1, (b) two edges
running parallel with the imaginary axis and extending (1) from ε to ε + i∞ and (2) from 1 to
1 + i∞, and (c) the fourth edge closing the contour at i∞. Noting that no contribution comes
from the last edge, we find

Ia = Ib1 − Ib2 (23)

where

Ib1(ω
′, ω) = ivH e−iω′vH (1−ε)

∫ ∞

0
dz e−ω′vH z(ε + iz)iω/k (24)

Ib2(ω
′, ω) = ivH

∫ ∞

0
dz e−ω′vH z(1 + iz)iω/k. (25)

The next step is to transform the integrals in equations (24) and (25) with one integration
by parts using (note that there is no z → ∞ boundary term for the integrands of interest)∫ ∞

0
dz e−ω′vH zF (z) = 1

vH ω′ F(0) +
1

vHω′

∫ ∞

0
dz e−ω′vH zF ′(z) (26)

from which

Ib1(ω
′, ω) = i eiϕ

ω′ +
i eiϕ

ω′
( iω

k

) ∫ ∞

0
dz e−ω′vH z(ε + iz)iω/k−1 (27)

Ib2(ω
′, ω) = i

ω′ +
i

ω′
( iω

k

) ∫ ∞

0
dz e−ω′vH z(1 + iz)iω/k−1 (28)

3 This is directly inspired from the calculations of Calogeracos in [2, 3].
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where we have introduced

eiϕ = e−iω′vH (1−ε)εiω/k = e−iω′va−iωf (va). (29)

It is useful to observe for what follows (equation (30)) that the phase i eiϕ is precisely the
same as that which appears in the second fraction in the parentheses in equation (17). As a
passing remark, it is not hard to realize that this is a direct consequence of the continuity of
the trajectory at v = va , and that a similar observation applies for the identity between the
i numerators in equation (28) and that in the first fraction in equation (17), assured by the
continuity at v = 0.

Now let us make the following grouping in β = βu +βa . We add the − and + contributions
in equation (17) to that corresponding to the first terms in Ib2 and, respectively, Ib1, and we
obtain

1

2π

√
ω′

ω

(
i

ω′ + D−ω
− i

ω′

)
− 1

2π

√
ω′

ω

(
i eiϕ

ω′ + D+ω
− i eiϕ

ω′

)
. (30)

We can immediately see that equation (30) behaves as ω′−3/2 for ω′ → ∞.
An identical behaviour proves to be valid for the contribution from the remaining terms in

Ib1 and Ib2; with a second integration by parts (26) we find that the integrals lead to a second
negative power in ω′, from which the conclusion follows (see point (1) in the appendix for a
detailed check). It is evident that we have obtained thus the well-behaved form of β(ω′, ω)

for large ω′ frequencies we have looked for.
We turn now to the limit (1). We start with the obvious observation that it is sufficient

for our purpose to pay attention only to that part in |β(ω′, ω)|2 which makes Nω(ta) diverge
for ta → ∞. (We might recall here that the total particle number diverges for the forever
accelerated trajectories). It is transparent from the quantities in equations (17) and (19) that the
divergence cannot arise in the coefficients themselves, which clearly shows that it is necessary
to consider the limit after the ω′ integration.

A closer look at the ω′, ε dependence in equations (27), (28) and (30) shows that the
divergence can only arise from the integral term4 in equation (27). One way to see this is
as follows. Let us denote by B(ω′, ω) its contribution in β(ω′, ω). We can then prove the
following properties (see point (2) in the appendix): (i) the modulus |B(ω′, ω)| admits an
upper bound of the form C1ω

′−1/2, and (ii) the remaining part up to β(ω′, ω) in modulus,
|β(ω′, ω) − B(ω′, ω)|, also admits an upper bound of the form C2ω

′−3/2, where C1, C2 are
two quantities independent of ω′and ε. Now let us organize the integrand in equation (20) as

Nω(ta) =
∫ ∞

0
dω′|{β(ω′, ω) − B(ω′, ω)} + B(ω′, ω)|2. (31)

Expanding the square in equation (31) and using properties (i) and (ii), it is not difficult to
check that the divergence can only come from the pure B(ω′, ω) contribution, i.e.∫ ∞

0
dω′|B(ω′, ω)|2. (32)

(All other integrals admit an upper limit independent of ε. It is sufficient to pay attention to
the contributions from frequencies ω′ → ∞; see below.)

Thus, we can conclude that for ε approaching zero, or for ta sufficiently large, the particle
number can be approximated to

Nω(ta) ∼ (ω/k2)

4π2

∫ ∞

0

dω′

ω′

∣∣∣∣
∫ ∞

0
dz e−ω′vH z(ε + iz)iω/k−1

∣∣∣∣
2

. (33)

4 Note that the integral in equation (28) is actually independent of ε.
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Our remaining task is to consider the ratio between equations (33) and (see the identities
in equations (5) and (22))

ta ∼ − 1

2k
ln ε (34)

and find the limit ε → 0.

3.2. The limit ε → 0

Before proceeding, there are a few comments to be made about formula (33). First, we have
to observe that the vH parameter is of no relevance for the limit. After a change of variable
z → z/vH , we find it reappears only as a multiplicative factor for ε, and (cf the logarithmic
dependence in equation (34)) we see that this will have the same effect as that of a finite
quantity added to the time ta .

Secondly, we do not have to worry about what might look like a divergence from
frequencies ω′ → 0. The 1/ω′ factor must be seen as just an artefact of our approximation.
Looking at the expressions in equations (17) and (19), we see immediately that β(ω′, ω) are
well behaved in this limit (actually, they vanish). Moreover, we can prove the following
property in what concerns the ‘low’ ω′ behaviour of the coefficients; the contributions from
frequencies ω′ up to any fixed value in the particle number (20) will remain finite for ε → 0
(see point (3) in the appendix). Hence, we can justifiably replace the null integration limit
ω′ = 0 in equation (33) with some non-zero quantity ω′

inf , expecting the result for nω not to
depend on ω′

inf .
(It is worth noting at this point that we can see this property as a translation of the

common statement in the literature that for the flux from the asymptotic part of the accelerated
trajectory (which corresponds here to ε → 0) ‘the high ω′ frequencies dominate’. The
underlying physical picture is that, because of the increasingly large redshifts due to the
reflection on the mirror, we have to count the contributions from zero-point oscillations with
increasingly large incoming frequencies ω′.)

Now let us write the limit (1) as

nω = − lim
ε→0

1

ln ε

∫ ∞

ω′
inf

dω′

ω′ Nω(εω′) (35)

where we have introduced (we set vH = 1 and make z → z/ω′ in equation (33))

Nω(w) = 1

2π2

(ω

k

) ∣∣∣∣
∫ ∞

0
dz e−z(w + iz)iω/k−1

∣∣∣∣
2

. (36)

A convenient method to evaluate the quantity in equation (35) is by observing that, since both
the integral and the ln factor diverge for ε → 0, we can apply the l’Hospital rule. Taking the
necessary derivatives with respect to ε, we find (the prime denotes derivation with respect to
the argument)

nω = − lim
ε→0

ε

∫ ∞

ω′
inf

dω′ N ′
ω(εω′) = − lim

ε→0

∫ ∞

εω′
inf

dwN ′
ω(w). (37)

Further observing that Nω(w) vanishes for w → ∞, it is evident from the last integral that
equation (35) is equivalent to

nω = lim
w→0

Nω(w). (38)

We see at this point that the arbitrary frequency ω′
inf disappears, as anticipated, from the

spectrum.
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Considering now the limit above, we must be aware of the following aspect. Setting
directly w = 0 in equation (36), as it stands, is problematic due to the z−1 behaviour of the
integrand near z = 0. To sidestep this difficulty, we shall appeal to the following additional
analysis. Let us recall that a standard procedure in QFT calculations for assuring well-defined
results when dealing with infinitely extended systems, as in our case, is to impose the vanishing
condition for the fields at spatial infinity. Let us show that this prescription will lead us to an
unambiguous way to evaluate the limit (38).

Clearly, the vanishing condition for a quantum field is equivalent to that for each of its
modes, separately. The basic observation to be made in our situation is that, since the ω′

frequencies disappeared from equation (36), it is only the ω-labelled modes which must be
taken care of. These are the out modes (10), and if we further look at the general form of the
coefficients (14) we see that, moreover, it is only their v-dependent component which must be
considered for our purpose, i.e.

e−iωf (v). (39)

The next step is to note that, since we deal with the region at the right of the mirror, infinite
distances mean x → ∞, and this implies5 for f (v)

f (v) → ∞. (40)

The limit (40) tells us that the vanishing of (39) at spatial infinity can be assured by attaching
to all frequencies a negative imaginary part, i.e. to make

ω → ω − iλ λ > 0 (41)

in the final formula letting λ → 0.
This proves to be crucial for the limit (38); the z−1 behaviour in equation (36) now

becomes z−1+λ/k>−1, and in these conditions we can safely set w = 0. Thus, it is possible to
write

Nω(0) = 1

2π2

(ω

k

) ∣∣∣∣
∫ ∞

0
dz e−z(iz)iω/k−1+λ/k

∣∣∣∣
2

λ → 0. (42)

We recognize at this point the Gamma functions in∣∣∣∣
∫ ∞

0
dz e−z(iz)iω/k−1+λ/k

∣∣∣∣ = e−πω/2k |	(iω/k + λ/k)| (43)

where there is no problem taking λ = 0.
Simple further calculations using

(iω/k)	(iω/k) = 	(iω/k + 1) (44)

and

|	(iω/k + 1)|2 = ω

k

π

sinh πω/k
(45)

finally give

nω = 1

π

1

e2πω/k − 1
(46)

and this is the result we have sought.

5 For v = t + x sufficiently large, we reach the uniform motion regime, and here f (v) = u(v) linearly increases
with v.
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4. Final comments

There is an important observation to be made about the spectrum in equation (46). If we
compare it with the standard result in the literature [5], we find that it is larger by a factor
of two. This is the moment to mention that the (rightward) emitted energy flux6 for our
trajectories (3) reads

〈Tuu(u, v)〉ren = k2

48π
(47)

and that it is half of equation (46) which, integrated over frequencies with ω energy per mode,
reproduces this value, i.e.∫ ∞

0
dω

(nω

2

)
ω =

∫ ∞

0

dω

2π

ω

e2πω/k − 1
= k2

48π
. (48)

The origin of this discrepancy is not hard to find. It has to do with the general facts that (1)
for a source in motion (the mirror, in our case) the emitted energy per unit of time will not
equal that received by a stationary observer, and (2) it is the ‘received’ energy per time ratio
which defines the local flux, identical observations being valid for any other radiated quantity.
One can show from simple kinematical considerations that, when the source recedes from
the observer with constant velocity vS and the emission rate is constant in time, the relation
between the two ratios is, in evident notations (Q denotes the radiated quantity, vS is in units
of speed of light and t is still the Minkowski time)

dQ(rec)

dt
= 1

1 + vS

dQ(em)

dt
. (49)

In order to make quantitative our explanation using equation (49), we shall need to invoke the
picture regarding the spectrum we have sketched in the introductory section; that is, we shall
admit that nω can be identified with the number of emitted particles in the ω mode per unit of
time at very large times7 in the accelerated regime, i.e. we can write

nω = dN(em)
ω

dt
t → ∞. (50)

Now let us observe that for our trajectories of interest, i.e. with ta → ∞, the mirror’s velocity
satisfies −dx/dt ≡ vS → 1 for t → ∞. It is immediate from these that the ‘received’
spectrum that will be measured by a stationary observer in this limit will be

dN(rec)
ω

dt
= nω

2
. (51)

This leads us to the expected consistency with the local field theoretical result for the flux in
equation (47).

As a second observation, let us draw attention to a more delicate aspect of the flux, which
we have tacitly ignored in our discussion. Let us recall that, if we denote by α = α(τ) the
mirror’s proper acceleration, with τ the proper time, the radiated flux can be written

〈Tuu(u, v)〉ren = − 1

12π

(
du

dτ

)−2 dα

dτ
u = u(τ). (52)

It is transparent from equation (52) that at the time t = ta , where α instantaneously jumps
from a negative to a null value, a flux with a delta-like profile will be produced. This means
6 That is, the uu component of the renormalized energy–momentum tensor; all other components of 〈Tµν〉ren
identically vanish.
7 Infinite, in order to reach the supposed steady-state regime dN

(em)
ω /dt = const.
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that a finite amount of energy will be radiated right at the end of the acceleration regime, which
can be easily obtained from equation (52) to be

E =
∫ ua+0+

ua−0+

du〈Tuu〉ren = α

12π

(
du

dτ

)−1

u=ua−0+

ua = u(va). (53)

Translating8 this for our trajectories (3), we find (notably, the result turns out to be independent
of va)

E = − k

24π
. (54)

The essential point for us is that E remains below a finite upper bound, no matter how large
the acceleration interval. This allows us to conclude that only a finite number of particles
per mode can be excited during this final emission burst, which means that this number will
be of no relevance in the total quantity Nω(ta) → ∞ for ta → ∞. This assures us that the
significance of nω is precisely the same as that assumed from the very beginning.

Finally, we would like to point out a possible generalization of our investigation. It arises
as a natural question to see how the spectrum will look if we accelerate a semitransparent mirror
instead of a perfectly reflecting one. A moving mirror model with this feature, which very
likely will allow a similar calculation, was recently constructed in [6], as a direct extension of
the model of Fulling and Davies to the case when the mirror is treated as a classical delta-like
potential in interaction with the quantum field. As a striking difference with respect to
the perfect reflectivity case, it is worth mentioning that the model predicts that, for the same
accelerated trajectories as those considered here, the flux will completely vanish in the infinite
future [7]. This makes it very plausible that in an analogous calculation the particle number
Nω(ta) will remain finite in the limit ta → ∞, which seems to us as a good indication that the
thermal spectrum will fail to appear. We hope to address this and other related questions in a
forthcoming paper.
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Appendix

We include here the proof for a series of statements made in the text (points (1)–(3) in
section 3).

(1) After one integration by parts, the integrals in equations (27) and (28) lead to an expression
of the form ∫ ∞

0
dz · · · = A

ω′ +
B

ω′

∫ ∞

0
dz e−ω′vH z(C + iz)iω/k−2 (A.1)

where A and B are independent of ω′, and C equals ε or 1. It is sufficient for our purpose
to check that the second term in the right member decreases no slower than 1/ω′ for
ω′ → ∞. To this end, let us observe that for C > 0 and z � 0 it is true that

|(C + iz)iω/k−2| � 1/C2. (A.2)

8 The useful formulae here are du/dτ = √
u′ and α = −[

√
u′]′/u′, with u′ = du/dv.
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We can see from here that the modulus of the C-dependent integral can be majorated by
1/(ω′vH C2), which suffices for our point.

(2) Property (i). A simple rearrangement in equation (27) gives, paying attention to the
prefactor in equation (19),

B(ω′, ω) = 1

2π
√

ω

(√
ω′Ib1(ω

′, ω) − i eiϕ

√
ω′

)
. (A.3)

Considering now the integrand in equation (24), let us observe that for ε > 0 and z � 0
the following inequality holds

|(ε + iz)iω/k| � 1. (A.4)

Using this in equation (24) we can conclude

|Ib1(ω
′, ω)| � 1/ω′ (A.5)

and the property follows from applying |z1 + z2| � |z1| + |z2| in equation (A.3).
Property (ii). We note first that the difference β(ω′, ω) −B(ω′, ω) is the sum between (a)
the quantity in equation (30), and (b) the contribution from the second term in equation
(28). We apply the triangle inequality to these two terms. The property is evident for
quantity (a). For contribution (b), we observe that for z � 0

|(1 + iz)iω/k−1| � 1. (A.6)

This shows that the modulus of the integral in (28) can be majorated by 1/(ω′vH ), which
leads to the conclusion.

(3) Let us separate the contribution from 0 < ω′ < ω′
inf in Nω(ta) as

Nω(ta)low =
∫ ω′

inf

0
dω′|β(ω′, ω)|2. (A.7)

A simple algebra shows that, irrespective of the ω′ dependence in β = βu + βa , we can
write

1

2
Nω(ta)low �

∫ ω′
inf

0
dω′|βu(ω

′, ω)|2 +
∫ ω′

inf

0
dω′|βa(ω

′, ω)|2. (A.8)

It is sufficient now to check that each of the two integrands admits an upper bound
independent of ε, which remains finite on the integration domain. For the first integrand,
this is obvious from equation (17). For the second integrand, if we look at the integral
in equation (19) we see that the integrand is a pure phase. We can infer from this (using
va < vH )

|βa(ω
′, ω)|2 <

1

4π2

ω′

ω
vH (A.9)

which concludes the proof.
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